A Primer on the Methods and Applications for Contrast Echocardiography in Clinical Imaging
نویسندگان
چکیده
Contrast echocardiography is broadly described as a variety of techniques whereby the blood pool on cardiac ultrasound is enhanced with encapsulated gas-filled microbubbles or other acoustically active nano- or microparticles. The development of this technology has occurred primarily in response to the need improve current diagnostic applications of echocardiography such as the need to better define left ventricular cavity volumes, regional wall motion, or the presence or absence of masses and thrombi. A secondary reason for the development of contrast echocardiography has been to expand the capabilities of echocardiography. These new applications include myocardial perfusion imaging for detection of ischemia and viability, perfusion imaging of masses/tumors, and molecular imaging. The ability to fill all of these current and future clinical roles has been predicated on the ability to produce robust contrast signal which, in turn, has relied on technical innovation with regards to the microbubble contrast agents and the ultrasound imaging paradigms. In this review, we will discuss the basics of contrast echocardiography including the composition of microbubble contrast agents, the unique imaging methods used to optimize contrast signal-to-noise ratio, and the clinical applications of contrast echocardiography that have made a clinical impact.
منابع مشابه
Comparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملApplications of gold nanoparticles for medical imaging
Background & Aim: Molecular imaging enables us to non-invasively visualize tissue microstructures and lesion characterization, allowing accurate diagnosis of diseases at early stages. A successful molecular imaging requires a nontoxic contrast agent with high sensitivity. Nowadays, a wide range of nanoparticles have been developed as contrast agents for medical imaging modalities. Here, we revi...
متن کاملEffect of coating thickness of iron oxide nanoparticles on their relaxivity in the MRI
Objective(s):Iron oxide nanoparticles have found prevalent applications in various fields including drug delivery, cell separation and as contrast agents. Super paramagnetic iron oxide (SPIO) nanoparticles allow researchers and clinicians to enhance the tissue contrast of an area of interest by increasing the relaxation rate of water. In this study, we evaluate the dependency of hydrodynamic si...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کاملSWI: Probe for neuroradiologists
Susceptibility-weighted imaging (SWI) has continued to develop into a powerful clinical tool to visualize venous structures and iron in the brain and to study diverse pathologic conditions. It is a new art which evaluates and exploits the properties of blood, iron and other tissues. It is a magnitude or filtered phase images or combination of both, obtained with high-resolution 3D fully velocit...
متن کامل